Customer Relationship Management and Data Mining: A Classification Decision Tree to Predict Customer Purchasing Behavior in Global Market
نویسنده
چکیده
In the global market of today, Customer Relationship Management (CRM) plays a fundamental role in market-oriented companies to understand customer behaviors, achieve and maintain a long-term relationship with them, and maximize the customer value. Moreover, the digital revolution has made information easy and fairly inexpensive to capture. Thus, companies have stored a large amount of data about their current and potential customers. However, this data is often raw and meaningless. Within the CRM framework, Data Mining (DM) is a very popular tool for extracting useful information from this data and for predicting customer behaviors in order to make profitable marketing decisions. This research aims to demonstrate the classification decision tree as one of the main computational data mining models able to forecast accurate marketing performance within global organizations. Particular attention is paid to the identification of the best marketing activities to which firms should concentrate their future marketing investments. The criteria is based on the loss functions that confirm the accuracy of this model. Niccolò Gordini University of Milan – Bicocca, Italy Valerio Veglio University of Milan – Bicocca, Italy DOI: 10.4018/978-1-4666-4450-2.ch001
منابع مشابه
Modelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach
In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...
متن کاملClassifying the Customers of Telecommunication Company in order to Identify Profitable Customers Based on Their First Transaction, Using Decision Tree: A Case Study of System 780
Effective knowledge and awareness of customers require the market segmentation, through which the customers who have the same needs and purchasing patterns as well as the same response to marketing plans are identified. The selection of a proper variable is a requirement, among other, for a successful market segmentation. In today' world, on one hand, the consumers are bombarded with new goods ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015